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In this paper, we concentrate our attention upon the troubles in the construction 
of nontrivial models in nonlinear quantum field theory which may be connected 
with the already known axioms of quantum field theory. We propose to come 
back to classical nonlinear (quasilinear) field theory for obtaining some informa- 
tion how to change these axioms. Simultaneously, we propose a program of 
quantization of these theories using Riemann waves, multiple simple waves, and 
simple elements. 

Nonlinear quantum field theory has some basic difficulties. It is very 
well known that in four-dimensional space-time, there do not exist nontrivial 
models, i.e., models of interacting quantum fields. The only existing models 
are of free fields. We have interacting nonlinear models only in two- 
dimensional space-time. But the two-dimensional case is very special and 
probably has nothing to do with physical reality. Someone may  ask why 
we have such difficulties and may suspect that all models in contemporary 
quantum field theory are trivial. Perhaps axioms of quantum field theory 
are too strong and only free fields satisfy these axioms, maybe, because 
known axioms of quantum field theory are abstracted from linear 
phenomena as Dirac, Klein-Gordon,  Maxwell, Schr6dinger equations. This 
is reasonable, but nobody knows how to change these axioms. How do we 
construct nontrivial nonlinear quantum models ? There are some possibilities 
to obtain information how to do this. We must come back to classical field 
theory, now nonlinear classical field theory. Of course, there is only "one 
linearity," but there are "many kinds of nonlinearity." It is worthwhile to 
notice that the simplest case of nonlinearity is quasilinearity and this is 
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what we consider. The most general quasilinear system of  partial differential 
equations has the following form: 

�9 ~, 1 .. u;) Ouj {0 
aj tu  , u 2, - - =  (1) 

", Ox ~ b'~ (u 1, u 2 , . . . ,  u l) 

where s = l , 2 , . . . , n ;  v = l , 2 , . . . , m ;  j = l , 2  . . . .  , l ;  x = ( x ~ , . . . , x n ) ~ E ;  
u = (u 1, u 2 , . . . ,  u;) ~ ~. 

This system is of  first order and may be homogeneous or non- 
homogeneous.  Many equations of  mathematical  physics may be transformed 
into (1). For example,  Euler, Navier-Stokes,  Yang-Mills,  Kdv, Einstein, 
nonlinear Maxwell equations. What is so important  in (1)? Equations (1) 
are nonlinear in unknown functions (u 1, u 2 , . . . ,  u l ) ,  but they are l inear in 
theii" first derivatives. This fact has very important  implications. 

Now we come back to linear theory and let us consider two important  
concepts: Fourier expansion and plane waves. We know that elementary 
solution of  linear systems of  shape (1) are plane waves.  In this case 
coefficients a} v and b s are constant. It is very easy to see that in the linear 
case, the plane wave u j = T j e i~ox~ where a]VT~h~ = 0  is a solution of  the 
linear homogeneous system. Of  course a sum 

(p) 

TJexp(iAvx ~) (2) 
p (p) 

is a solution too, where 
(p) 

Va; ~ ~/x~ = 0 (3) 
t, (v) 

When we quantize linear systems, we introduce a space of  states and 
annihilation and creation operators. Of  course, a space of  states is a l inear 
(Hilbect space) and these operators are also linear and act in this space. 
Summing up, we have elementary solutions to basic equations which may 
be treated as elementary excitations of  the vacuum state. By acting with 
creation operators,  we may add new elementary solutions and obtain higher 
excited states. In this way we introduce the Fourier expansion in elementary 
solutions (plane waves). All such obtained functions are solutions of  the 
basic equations. In the case of  nonhomogeneous equations, we consider a 
general solution in the form 

(p) (o) 
u J = ~  y J e x p ( i h v x ~  yJ hvx v ( 4 )  

p (p) (o) 

(p) 
and ~ yJexp( iAox ~) is a solution of the homogeneous system. For T and 

p (p) (o) 
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(o) 
2t we have 
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�9 sv(a) sv(o) 
a;~3'J~)v = b s, rank aj Av, b'll =rankl la  ~ ,Xoll (5) 

(o) 

where a]v = const, b s = const. 
In this case, elementary special solutions of  the nonhomogeneous 

system may be treated as "a  vacuum state" and elementary solutions of 
homogeneous system as elementary exitations of  vacuum. Of  course in this 
case the vacuum may be degenerate. In the homogeneous case the vacuum 
is only one- - the  zero solution. Now we pass to the quasilinear case, but a 
nonlinear one. In contemporary quantum field theory, we consider the space 
of states as linear space (Hilbert space) with countable base. Elements of  
this space are not solutions of  basic equations in general and of course a 
sum of two elements is not a solution. Maybe, linearity of state space and 
nonlinearity of  field equations are in contradiction. To avoid this possible 
contradiction, we search for a generalization of plane waves for the 
quasilinear system, and generalization of the Fourier expansion in these 
waves. Fortunately, this is possible. This generalization is called a simple 
wave or a Riemann wave. Let us consider system (1). This system may be 
undetermined, m >I l, and let us suppose also that it is nonelliptic. That 
means that there exists, some nontrivial (real) solutions of the algebraic 
system of equations 

s v  " aj 3/2to = 0 (6) 

where 

ranklla]VAoll<l, for 3'~ R',  a e R" 

The above algebraic system of equations specifies adequately the so- 
called knotted characteristic vectors in hodograph space (the values of  
functions u J). ~ = R 1 and in physical space E = R n (independent variables). 
The pair 3' and )t will be called a knotted pair if[ it obeys these equations. 
This fact will be marked by 3' - A. The matrix L~ = YJAv created by a pair 
of  knotted vectors will be a simple integral element, because rankll L~(uo)LI = 
1. It is convenient to consider A as an element of  space E* (space of linear 
forms), E* ~ ;t: E ~ R 1. In these terms, the element L is an element of  tensor 
space T J g |  L= 3"| 

Now we introduce a simple wave. Let the map  u: D ~ ~g, D c E be 
any solution of the homogeneous system (1). We call u a simple wave for 
homogeneous systems iff the tangent mapping du is a simple element at 
any point XoED. Let us consider the smooth curve F: u ~ f ( R )  in the 
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hodograph space ~ parametrized by R. Thus the tangent vector 

df 
- -  (R)  = 3"(f(R)) (7) 
dR 

is a characteristic vector. Then, there exists a field of  characteristic covectors 
connected with y ( f ( R ) )  defined on the curve F: A = A ( f ( R ) ) .  We are 
allowed to state the following. I f  the curve F c ~ obeys the above conditions 
and if ",I~(.) is any differentiable function of one variable, then the function 
u ( X )  defined in the following implicit way, 

u = f ( R ) ,  R = ~ ( A ~ ( f ( R ) ) X  ~) (8) 

where s~ aj y'A~---0 is a solution of homogenous system (1). 
This solution is called a simple wave (or Riemann wave). A proof  may 

be obtained by direct differentiation of implicit relations which are written 
above. The curve F is called a characteristic curve. Parameter  R is called 
the Riemann invariant. 

Now we pass to nonhomogeneous  systems and consider the following 
system of algebraic equations: 

(o) 
a;  ~ yiA~= b s 

(o) (9) 
(o) (0) 

rank]] a~ ~ A~, b s II = rankl] a~ ~ Ao]I 

(o) 
We call the pair  y and A a knotted characteristic pair for nonhomogeneous  

(o) 
system iff it obeys the above condition. 

Similarly as in the homogeneous case, we connect this pair with the 
exact solution called a simple state (Grundland,  1974). 

Let us suppose that u is a solution of  the nonhomogeneous  system and 
has the following form in tangent space: 

(o) 
du = T@ A (10) 

(o) 

(o) 
From O= d(du)  = d ( 3 ' |  A) we get 

(o) 

(o) (o) 
A.~-- X (11) 

(o) (o) 
and by changing the length of A, we obtain A = const, 3' means derivative 
in the direction 3'. 
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(•) N o w  we are al lowed to state the following. I f  y and f rom a knot ted 

(o) n t 
pair  for the n o n h o m o g e n e o u s  system, then u: D ~ a  is a solution o f  
n o n h o m o g e n e o u s  system where 

u j  = ~cj [ n ", ~ J  
J ,/~o), ~ o  = 3, 3 

(o) 

(o) (o) (o) (o) (o) 
Ro = hvx v, ( hi, h2, �9 �9 �9 h.) = const  = h 

(12) 

We introdt~ce some generalization o f " F o u r i e r  expans ion"  for homogeneous  
and n o n h o m o g e n e o u s  system. Simple w a v e a n d  simple state may  be con- 
sidered elementary solutions. But we can not  add these solutions in hodo-  
graph space ~ (equations are nonl inear  in general). It is possible to " a d d "  
elementary solutions in tangent  space- -equa t ions  are quasil inear (linear in 
tanget  space - - space  o f  first derivatives). Let us assume a special form of  
tangent  mapp ing  du 

du =~1Y|  ~)+ ~2 Y |  ~ ) (13) 
(1) (2) 

(for homogeneous  system) where ~:l(x), ~:2(x) are arbitrary functions and 
(0 

y - A, i = 1, 2 are knot ted pairs. Let the funct ion u be a funct ion o f  two 
(0 
variables, u = f (  Rb R2) then, 

and we have 

du = O f  dR,+ o f  dR2 
OR1 OR 2 

(14) 

Of Of = y ,  = y  
O R 1  (1) O R 2  (2) 

(15) 
O) (2) 

dR1 = ~1 A, dR2 = ~2 h 

I f  we solve the above system, we obtain a solution which may be considered 
a double  wave (Burnat,  1966; Paradzyfiski, 1971a; Riemann,  1869). But we 
are dealing with nonl inear  equations and some restrictions for h and y 
must  appear.  These restrictions are called integrability conditions,  From 

0 = d(dg~) = d (~:ih(~ i = 1, 2 (16) 

we get 

(1) (2) 
�9 .~(;). R~ ~ Lin{ A, h }, i ~ j ,  i ,j  = 1, 2 (17) 
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and 

[ 3/, 7] = 0  (17') 
(1) (2) 

_(1) ()t) ~) Where Lin{ A, (~)} means a linear space spanned by and and [ 3,, 3/] 
(1) (2) 

is a commutator  of two vector fields y and yj, Rj means derivative with 
(1) (2) 

respect to Rj. We get 

(u 
~t'I(R1, R2) = A,X v 

(18) 
(2) 

aJxtz(R1, R2) : hv xv  

Off these conditions are satisfied), where ~ ( . , - ) ,  ~I'r2( " , ") are arbitrary 
differentiable functions of two variables. Thus the double wave is defined 
as follows: 

u(X) =f(R,, R2) 

where f satisfies equation (15) and R1, R2 depend on X by implicit relations 
(18). In general, we have K waves 

K 

du = Y ~,3/| (20) 
i=1 (i) 

u =f(R1,  R2, �9 �9 �9 , RK) 

of 
= 3/ (209 

ORi (i) 

d R j  = e,~i  ), i = l ,  2 ,  . . . , r 

The integrability conditions for K waves have the form 

(i) (i) (J) 
A,Rj~ Lin{ A, )t}, i ~ j , i , j = l , 2 , . . . , K  

(21) 

(i) U) 

In this way we get the multiple wave as a kind of expansion in 
elementary solutions for the homogeneous system. It has been proved, that 
every solution of the Cauehy problem for homogeneous system (1) could 
be represented in the form (20), (21), (see (3rundland and Zelazny, 1982; 
Peradzyfiski, 1970, 1981). 
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Let us pass to nonhomogeneous systems and consider a solution u, 
whose differential has the form 

du = 7@ (~)+sr174 a (22) 
(o) 

(o) 
where Y~ h is a knotted nonhomogeneous pair, y ~ h  a knotted 
homogeneous pair, and ~(X) is an arbitrary function. We may consider 
analogs for the linear equations (4), but now in a tangent space. 

If we add elementary solutions in a tangent space, we must always 
look for integrability conditions. Supposing that u ( X )  = f ( R ,  Ro) and 

o f  Of - Y ,  = Y 
OR ORo (o) 

(o) 
du = Of dRo + o f  dR, dRo = X 

ORo OR 

we get the integrability conditions 

(o) 

d R = ~ .  a 

(23) 

o f  Of (0 (o) 
- -  = 7, = 7, dRi = ~ih, dRo = A, 
ORs ( i) ORo (o) 

Thus, 

u(x)  =f(R1, R2,. �9 �9 Rr, Ro) 

i = l , 2 , . . . , K  

(27) 

where 

A,R0-- A 

(o) 
h,Ro~ Lin{ A, A} (24) 

(o) . (o) 
A,R~ Lin{ h, A} 

In the general case, we have (see Grundland, 1974) 

(i) 

(o) i=1  (i) 

[cf. (4)]. By introducing Riemann invariants for homogeneous and non- 
homogeneous systems, we get 

a f  K a t "  

dRo+ ~, ~ dR~ (26) 
du = ~ o  i=1 oKi 
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The integrability conditions are the following: 

(r) .(r) (s) 
h,Rs C Lin{ A, h }, r # s, r, s = 1, 2 , . . . ,  K 

(o) co) (i)} 
h,Re Lin{ A, 

(o) (s) (o) (o) 
h & ~  A, A,go~ h 

(28) 

(o) 

The equations for R may be integrated iff integrability conditions are 
satisfied and we get 

(1) 
xt~l(R1, R 2 , . . . ,  RK, Ro) = h , x  v 

(2) 
xI~2(R1, R2, . . .  , RK, Ro) = hvx v 

(K) 
~ :  (R1, R 2 , . . . ,  RK, Ro) = Aox v 

(o) 
Ro = box ~ 

where q~i(...) are arbitrary functions of (K + 1) variables. 

(29) 

Now we see that simple waves should play the role of  plane waves in 
nonlinear (quasilinear) theories. Simple waves and their generalizations, 
double and multiple waves are natural as the states of  one, two, or more 
particles in quantum field theories. A simple state is natural as the vacuum 
state (which may be degenerate). Nonlinear superpositions of simple states 
and simple waves, may play the role of quantum states of  one or more 
particles which were built over the arbitrary but established vacuum state. 
In this case, spontaneous symmetry breaking is possible and may be con- 
nected to the degeneration of  the vacuum.. The law of superposition in this 
case is not linear. It is linear only in tangent space. Because of  this, new 
operators of  annihilation and creation should be nonlinear. However, 
integrability conditions teach us that if we add a new wave to the system 
of K waves then this new wave will influence the first K waves. This means 
that new operators of  creation should be nonlocal. The general question is 
what is a space of states? We know that for a weak field (linear approxima- 
tion) Hilbert space is a very good space of  states. On the other hand, for 
a weak field we have linear superposition. But we also have linear superposi- 
tion in the tangent space of  solutions. Thus it would be reasonable to assume 



Program of Quantization of Nonlinear Theories 965 

that Hilbert space is a tangent space to the new space of states. In this way, 
we suppose that the new space of states is an infinite-dimensional manifold 
modelated over Hilbert space. It is so called Riemann-Hilber t  manifold. 
For example,  any hypersurface in Hilbert space is a manifold of  this kind. 
It is possible to prove that every Riemann-Hilber t  manifold may be embed- 
ded into this Hilbert space as a hypersurface (see Bessaga and Pelczyfiski, 
1975). It means that all manifolds that are interesting to us are hypersurfaces 
in Hilbert space with a countable base. Of  course, this space of states 
(hypersurfaces in Hilbert space) will be changed if we change the equations 
of  the field. For example, they should be different for nonlinear electrody- 
namics and for general relativity. Having the space of states we may 
introduce two spaces: the space of "in states" and "out  states." The two 
spaces are manifolds modelated over Hilbert space in the case ~oo for the 
time variable and correspond to spaces of  solutions in the asymptotic regions 
q:oe. It corresponds to choosing an asymptotic initial value problem for 
quasilinear system instead of Cauchy one. The nonlinear operator acting 
from first space ( -oe)  to the second (+oe) will be generalization of the S 
matrix. 

Now we are allowed to state the following program of quantization of 
nonlinear (quasilinear) theories. 

1 ~ Calculate and classify simple elements--s imple waves and simple states 
(Kalinowski, 1982, 1983, 1984). 

2 ~ Classify all possible double and multiple waves (superselection rules). 
3 ~ Construct space of s ta tes--appropr ia te  hypersurface in Hilbert space. 
4 ~ Construct operators of  annihilation and creation acting on the space 

of states according to the superposition law in the tangent space of 
solutions. 

5 ~ Construct the space of " in"  and "out"  states. 
6 ~ Construct the S matrix. 
7 ~ Construct field operators. 

This program should be very useful for the construction of quantum 
gravity. In this case, we can transform sourceless Einstein equations to a 
nonhomogeneous  system of  quasilinear equations of  first order. But in this 
case, we have u = (g~,  F ~ )  and we have to deal with 10+44 = 54 functions. 
Thus, we must work with an algebraic computer  program for 1 ~ For nonlinar 
electrodynamics, we have u = (H, E), only six functions and we deal with 
a homogeneous system. In the case of  gravity, it is possible to obtain 
degeneration of the vacuum (nonhomogeneous case). It is worthwhile to 
notice that integrability conditions for h ' s  and y 's  may be treated as a kind 
of superselection rule for interacting particles (waves). In the theory of 
simple waves and their interactions among themselves and with simple 
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states, there is quite great potential to describe a decaying of particles and 
a production of  particles. Let us come back to the system (1) and to its 
algebraization procedure. This means that we find all knotted pairs A - 3 '  
and we classify them. Up to now, we have considered only the most simple 
situation for which we have 

or equivalently 

[ 3`, y] = 0 (30) 
(o (J) 

[ 3', 3'] �9 Lin{ 3', 3'} (30') 
(i) u) (i) u) 

Let us consider a more general situation: 

[3 ' ,  3 ' ] �9  3', 3 ' , . . . ,  3'} (31) 
(ip) (io) (/1) (i2) (ik) 

where p, q = 1, 2 , . . . ,  K. The condition (3l) means that the polarization 
vectors 3" form a module of vector fields on the manifold of the solutions. 

(i) 
In the case of  equations (30), (30'), we have to deal with a two-dimensional 
module of  vector fields Y, 3'. 

(i) (j) 

In the general case, the integrabilty conditions are more complicated 
and the solutions can not be described by means of Riemann invariants. 
The physical meaning of  equation (31) is the following: an interaction of 
two waves of  types (p) and (q) produces waves of types (1), ( 2 ) , . . . ,  (K).  
For example, if 

[ 3', 3'] �9 Lin{ 3', 7 ,  3'} (32)  
(p) (q) (p) (q) (r) 

then it means that waves, one of  the type (p) and the second of  the type 
(q), produce the wave of  the type (r). This symbolically means 

(p) + (q) ~ (p) '+  (q ) '+  (r) '  (33) 

In general we can consider a full module of  vector fields 3, and we are 
looking for all submodules in order to find some rules of interaction 
including production of new types of waves (see Grundland and Zelazny, 
1982, 1983a, 1983b for more details and examples). 

Finally, we want to underline some differences between two types of 
integrability. It is very well known that there are two meanings of  integrabil- 
ity in the theory of nonlinear partial differentil equations. The first one is 
connected to the inverse scattering method, n-soliton solutions, Bgcklund 
transformation, infinite number of  conservation laws, and the~system of 
Riccati's equations (see Novikov, 1980; Rogers and Shadwick, 1982). There 
is a wide class of  nonlinear partial differential equations which allows us 
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to use the inverse scattering method and the solutions are expressible by a 
nonlinear superpositoin of n-solitons or an infinite number of solitons (so 
called c n  waves in the case of the KdV equation). 

The above-mentioned equations are in two variables only and they are 
known as full-integrable equations. This means that every solution can be 
represented as a nonlinear superposition of n-elementary solutions, so- 
called solitons or a cn-like wave (an infinite number, of such elementary 
solutions). Thus, we are able (in principle) to solve an arbitrary Caucby 
problem in the case of hyperbolic equations. These equations are the subject 
of the AKNS method and the Zakharov-Shabat method. These methods 
are able to reduce the solution of the above equations to the linear system 
of partial differential equations (so-called Lax pair or ZS pair). The integra- 
bility conditions for this system of equations are equivalent to the nonlinear 
equation. The unknown functions in the nonlinear equations are considered 
as "potential"  for the inverse scattering method. The spectral problem 
related to the scattering problem goes to a pointlike or continuous spectrum. 
In the first case, we are dealing with n solitons, in the second case, with a 
cn-like wave. Thus, we can say that the integrability conditions for this case 
mean the integrability conditions for a system of linear equations and these 
conditions are exactly the nonlinear equations. All of these equations are 
reducible to the system of quasilinear equations, homogeneous or non- 
homogeneous ones, i.e., to (1). It does not mean of course that every such 
system in two dimensions can be treated by these methods. 

It is quite difficult to write a clear criterion for such a case without 
finding the Lax pair or the ZS pair. Such nonlinear partial differential 
equations are called weak-nonlinear equations and there is a vast literature 
on their properties (see Novikov, 1980, and Rogers and Shadwick, 1982, 
for review). 

In this paper, we consider a completely different kind of integrability 
which cannot be connected to those described above in any simple way. 
Probably only the pseudopotential method by Wahlquist and Estabrook 
(see Rogers and Shadwick, 1982) has something to do with this subject. 
Moreover, this is a problem beyond the scope of this paper. We do not 
consider any additional system of linear equations connected to a nonlinear 
(quasilinear) system of equations. 

Integrability conditions which go to n-Riemann waves cut off from the 
manifold of solutions the submanifold. In the case of one Riemann wave, 
they are satisfied trivially. In the case of a double wave, the problem is not 
trivial, and it was solved by Riemann (see Riemann, 1869). The most 
interesting case, the case for k-planar Riemann waves and k-nonplanar 
Riemann waves, was solved by Z. Peradzyfiski and M. Burnat (see Burnat, 
1966; Peradzyfiski, 1970, 1971a, 1971b) by means of generalized Riemann 
invariants. A Grundland and Z. Zelazny consider integrability conditions 
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for k waves, interacting with a simple state. They prove that the integrability 
conditions go to the nontrivial solutions and find rules of  interaction of 
such waves in hydrodynamics and M.H.D. (magnetohydrodynamics).  (For 
applications, see Zajaczkowski 1974, 1979, 1980; Peradzyfiski, 1981; Cartan, 
1946.) 

There is a fundamental difference between the n-simple wave (n- 
Riemann wave) and the n-soliton solution (regardless of the fact that 
"solitonlike" equations are defined in two dimensions). The n-soli ton 
solution depends on afinite number of constants. The n-simple wave depends 
on a finite number of  arbitrary functions of one or several variables. Thus 
the soliton solution is rigid and the simple wave can be modulated. The 
wave "can carry information" (as , for  example, in radiotechnique). The last 
condition is known as Trautman's criterion and it was applied in general 
relativity in order to find exact wavelike solutions of  Einstein equations 
(see Trautman, !962; Zakharov, 1976; Kramer et al., 1980). The one-simple 
state solution could be considered as a solitary wave (1-soliton solution). 
The interaction of  n-simple waves with a 1-simple state could be considered 
(in principle) as an interaction of  an n-Riemann wave with "one soliton." 
However, the relation between solitons and n-Riemann waves seems to be 
more complex, because solutions describing n-waves interacting with a 
(one) simple state depend on some arbitrary functions of one and several 
variables and some constants. The problem of  the number of  arbitrary 
constants, arbitrary functions of one variable, and several variables was 
solved in Peradzynski (1971a) using Cartan's theorem (see Cartan, 1946). 
The theory of  simple waves and their interactions is possible to describe 
using geometrical methods. Roughly speaking, it means that there is a 
geometry of  such interactions. In this approach the "measure" of  nonlinear 
superposition is expressed by a curvature and a torsion of a connection 
constructed from knotted pairs 7 and A. This was done by Z. Peradzyfiski 
(1970, 1971a, 1971b, 1981). (For review, see Peradzyfiski, 1981; for more 
references see Grundland and Zelazny, 1983a, 1983b). 

In the Peradzyfiski (!981) once can find also some attempts to extend 
the algebraization procedure and the concept of simple waves and simple 
elements to elliptic systems of  differential partial equations. They are of 
course complex in general and they are called here simple modes. 
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